

Hacia un modelo sostenible y descentralizado de la gestión de residuos urbanos

I Jornadas de Formación

Xàtiva, 27 y 28 de octubre de 2017

Ponencia:

Fracción orgánica de residuos domiciliarios. Naturaleza y manejo

Marga López

¿¿De qué estamos hablando???

Google	compost	Aproximadamente 44.600.000 resultados (0,66 segundos)
Google	residuos municipales	Aproximadamente 11.800.000 resultados (0,42 segundos)
Google	punto limpio	Aproximadamente 4.080.000 resultados (0,51 segundos)
Google	FORM residuos	Aproximadamente 3.840.000 resultados (0,32 segundos)
Google	compostaje	Aproximadamente 2.100.000 resultados (0,36 segundos)
Google	ecoparque	Aproximadamente 1.380.000 resultados (0,56 segundos)
Google	residuos sólidos urbanos	Aproximadamente 841.000 resultados (0,40 segundos)
Google	rechazo residuo municipal	Aproximadamente 486.000 resultados (0,36 segundos)
Google	RSU residuos	Aproximadamente 408.000 resultados (0,45 segundos)
Google	fracción orgánica de residuo municipa	Aproximadamente 373.000 resultados (0,43 segundos)
Google	fraccion resto de residuos municipale	s Aproximadamente 356.000 resultados (0,40 segundos)
Google	biorresiduos	Aproximadamente 38.200 resultados (0,27 segundos)

¿¿De qué estamos hablando???

Noticias de ahora

¿¿De qué estamos hablando????

...y noticias de antes

Edición del sábado, 06 mayo 1972,

AL PARECER, SIN OLORES NI RIESGOS SANITARIOS

DENTRO DE UN AÑO FUNCIONARA UNA PLANTA TRITURADORA DE BASURAS CAPAZ PARA DOS MIL TONELADAS DIARIAS

El vertido, rigurosamente controlado, se efectuará en un valle aislado con un coste de más de trescientos millones de pesetas

SABADO, 21 DE OCTUBRE DE 1978

Nueva planta para tratamiento de basuras y desperdicios

VIERNES, 27 DICIEMBRE 1991

MP MONTAJES INDUSTRIALES

PRAMAR, S. L.

- TAMICES ROTATIVOS

Doña Crisanta, 47, 1.º E

Talleres: O'Donnell, 18

13700 TOMELLOSO

(C. Real)

Tel. (926) 51 53 62 (2 lineas)

- TRANSPORTADORES SIN-FIN
- PRENSAS CONTINUAS
- COMPUERTAS Y ESCLUSAS
- DEPOSITOS Y CALDEDERIA EN GENERAL
- SILOS, TOLVAS PARA FANGOS Y CONTENEDORES

- MONTAJES DE EQUIPOS Y PLANTAS INDUSTRIALES (DEPU-RADORAS, INCINERADORAS, COMPOSTAJE, ARIDOS, ETC.)

JUEVES, 18 DE SEPTIEMBRE DE 1980 Prevista para el Penedès

«No» a la planta de conversión de basuras

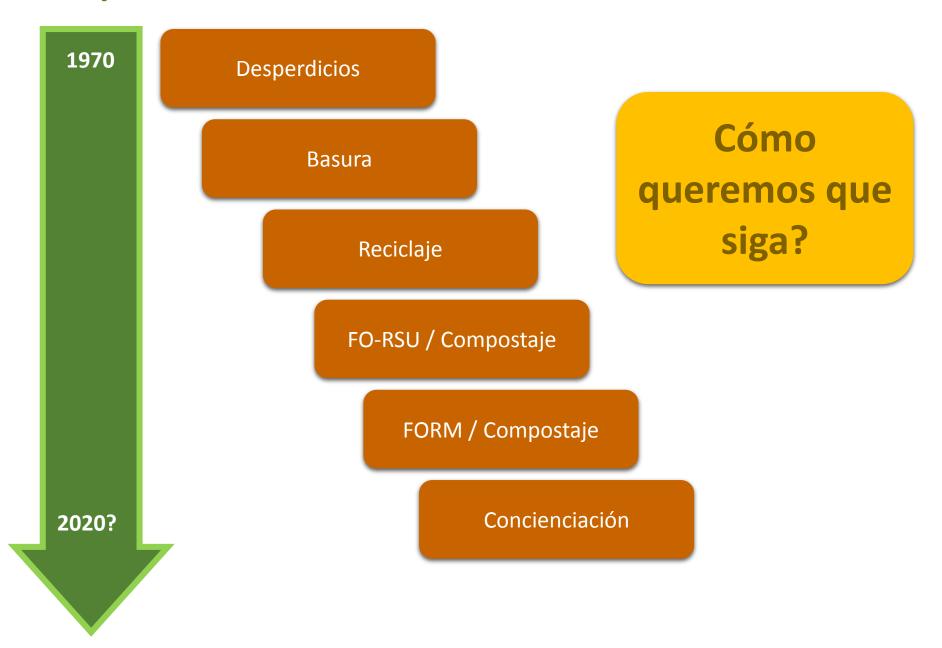
La obra ha sido excluida del Plan de Obras y Servicios de la Generalitat

La Generalitat, por medio de vicios de Cataluña la construca zona del Penedès.

Según se ha informado, la explicala Conselleria de Governació, ha ción dada por la Conselleria es que, adeexcluido del Plan de Obras y Sersistemas aún no están suficientemente experimentadas, Cataluña necesita toción de una planta de transforma- do un plan de eliminación de basuras ción de basuras en abonos que en base a un conjunto de vertederos, estaba programada por la Dipu- plantes de compostaje, recuperación y tación Provincial de Barcelona en combustión de basuras. Por otra parte, el vicepresidente de la Diputación de Barcelona, Jordi Cunill, ha declarado: El Plan de Obras y Servicios en la Nosotros creiamos que la regissimo de la obra en la actualidad era muy cuestión será aprobado, seguramente, importante para la zona del Penedes, JUEVES, 15 AGOSTO DE 1974

EN LA CAPITAL SE PRODUCEN 2.500 TONELADAS DE BASURA DIARIAS

Su recogida y transformación cuestan 800 millones al año Madrid, 14. - «La centidad de basura que se recoge aproximadamente en Madrid viene a representar unas dos mil quintentas toneladas diarias», declara Gonzalo Martin Palomo, jefe del departamento de limpiezas del Ayuntamiento en una entrevista que publica el último número de la revista «CYP» (contaminación y prevención).


A continuación añade el señor Martín Palemo que la recogida y transformación de estas basuras cuesta al Ayuntamiento unos ochocientos millones de pesetas al año, de los cuales más de setecientos son por la recogida.

Entre los procedimientos clásicos de transformación y recogida de basuras señala el señor Martín que los mejores son el reciclado y el compostaje, de los cuales el primero está todavía en plan de investigación y el «compost» abono obtanido por el método de compostelaje-- tiene muy poca salida en el mercado, «Hay que hacer una campaña de promoción de esta clase de abono, mentalizar al agricultor a emplear el abono en cultivos necesarios y otros condicionamientos. Para ello lo primero que hay que conseguir son instalaciones sencillas para la fabricación de este abono, en contra de las que hasta ahora ha habido en Madrid, que por sus caras instalaciones lo han elevado a un precio prohibitivo».

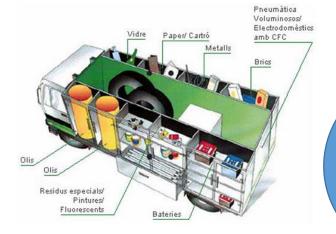
«En las basuras, finaliza et señor Martin Palomo, hay una extraordinaria fuente de riquezas, que es necesario aprovechar». -- Cifra.

Fuente: La Vanguardia

¿¿De qué estamos hablando???

Diferencias en la recogida. Recogida selectiva

Subterráneo

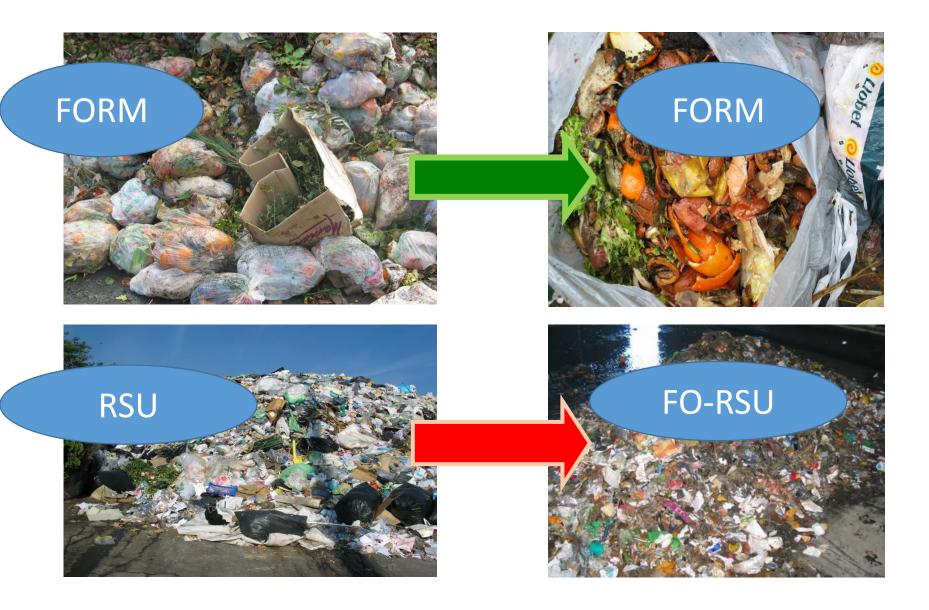

Neumática

Puerta a puerta

Punto limpio

Punto limpio móvil

El éxito
depende de
la
participación
de los
ciudadanos


Diferencias en la recogida. Recogida en masa

Diferencias en la calidad de la materia prima

Diferencias en la calidad de la materia prima

Diferencias en la calidad de la materia prima

Características de la FORM

Qué características tiene la FORM?

- Húmeda
- Heterogénea
- Variable (espacio, tiempo)

Problemas que puede crear

- Facilidad de pudrirse
- Genera olores y líquidos malolientes
- Aparición de insectos
- Ensucia otras fracciones valorizables

Composición de la FORM vs FO-RSU

Table 1 Characteristics of MS and SC.

FO-RSU

FORM

	MS				SC							
	n	Mean	STD	CV	Median	n	Mean	STD	CV	Median		
pH	13	5.66a	0.47	8.22	5.73	21	5.26b	0.55	10.43	5.01		
EC (dS m-1)	13	4.90a	0.97	19.87	5.24	21	3.43b	1.35	39.35	3.15		
MC (%)	13	48.96b	5.97	12.20	50.78	21	70.84a	5.67	8.00	71.02		
NH4+-N (mg kg-1 dwb)	13	609a	189.14	31.05	637	21	808a	626.69	77.58	598		
TOM (% dwb)	13	71.17b	7.90	11.11	69.13	21	85.15a	6.02	7.07	86.46		
Org-N (% dwb)	13	1.82b	0.39	21.20	1.82	21	2.65a	0.60	22.48	2.62		
mN (%)	13	3.58a	1.51	42.10	3.43	21	3.28a	2.72	83.04	2.59		
C/N	13	20a	3.77	18.62	20	21	17b	3.51	20.92	16		
ROM (% dwb)	8	12.55a	2.38	18.93	12.76	13	13.91a	5.15	37.05	13.97		
SD (%)	8	18.60a	4.64	24.92	19.19	13	16.21a	6.22	38.36	15.97		
nh-N (% dwb)	6	0.28a	0.04	15.81	0.30	10	0.32a	0.12	36.37	0.36		
rN (%)	6	17.60a	2.43	13.78	17.14	10	12.99a	6.27	48.28	13.39		

Note: MS: mechanical separation organic fraction; SC: separated collection organic fraction; dwb: dry weight basis; n: number of samples; STD: standard deviation; CV: percentage of coefficient of variation. Means labelled with the same letter do not differ significantly at a 5% probability level.

Parameters	MS				SC			
	n	Mean	SE	Median	n	Mean	SE	Median
P (%dmb)	13	0.44	0.04	0.40	21	0.58	0.07	0.45
K (%dmb)	13	0.56	0.05	0.55	21	1.14	0.08	1.01
Na (%dmb)	13	0.56	0.05	0.61	21	0.69	0.06	0.64
Ca (%dmb)	13	3.52	0.41	3.84	20	3.11	0.42	2.55
Mg (%dmb)	13	0.50	0.10	0.41	21	0.19	0.02	0.16
Fe (%dmb)	13	0.33	0.05	0.35	21	0.10	0.03	0.05
Mn (mg kg ⁻¹ dmb)	13	73	9.2	74	21	32	5.1	25
Zn (mg kg ⁻¹ dmb)	12	82	10.2	75	18	34	4.4	29
Cu (mg kg ⁻¹ dmb)	12	33	4.0	34	21	15	2.8	11
Ni (mg kg ⁻¹ dmb)	13	10	3.2	6	21	2	0.2	2
Cr (mg kg ⁻¹ dmb)	13	9	1.9	8	20	2	0.4	1
Pb (mg kg ⁻¹ dmb)	12	33	8.6	22	16	4	0.8	3
$Cd (mg kg^{-1} dmb)$	13	0.3	0.06	0.30	20	0.3	0.05	0

López et al., 2010; Huerta-Pujol et al., 2011.

Composición de la FORM vs FO-RSU

Table 1 Characteristics of MS and SC.		[FO-RSU					[FORM		
	MS n	Mean	STD	CV	Median		SC n	Mean	STD	CV	Median
pH EC (dS m-1) MC (%)	13 13 13	5.66a 4.90a 48.96b	0.47 0.97 5.97	8.22 19.87 12.20	5.73 5.24 50.78		21 21 21	5.26b 3.43b 70.84a	0.55 1.35 5.67	10.43 39.35 8.00	5.01 3.15 71.02
NH ₄ +-N (mg kg ⁻¹ dwb) TOM (% dwb) Org-N (% dwb) mN (%) C/N	13 13 13 13	609a 71.17b 1.82b 3.58a 20a	189.14 7.90 0.39 1.51 3.77	31.05 11.11 21.20 42.10 18.62	637 69.13 1.82 3.43 20		21 21 21 21 21	808a 85.15a 2.65a 3.28a 17b	626.69 6.02 0.60 2.72 3.51	77.58 7.07 22.48 83.04 20.92	598 86.46 2.62 2.59
ROM (% dwb) SD (%) nh-N (% dwb) rN (%)	8 8 6	↑ con	ductivid	18 93	12.76 19 30		13 13 10 10	13 91a	ductivid	37.05	13 97 17 16
Note: MS: mechanical separa percentage of coefficient of va	in on			iwb: antly		weigt	cv:				
Parameters			ogeno o ales pes		_ ediar				ogeno o tales pes		li
P (%dmb)		T me	aies pes	sau05	.40	П		₩ IIIei	tales pes	sau05	
K (%dmb) Na (%dmb) Ca (%dmb)		13	0.56 0.56 3.52	0.05 0.05 0.41	0.55 0.61 3.84		2	21 (1.14 0.69 3.11	0.08 0.06 0.42	1.01 0.64 2.55
Mg (%dmb) Fe (%dmb)	1	13	0.50 0.33	0.41 0.10 0.05	0.41 0.35		2	21	0.19 0.10	0.02 0.03	0.16 0.05
Mn (mg kg ⁻¹ dmb) Zn (mg kg ⁻¹ dmb) Cu (mg kg ⁻¹ dmb)	1	12 8	3 2 3	9.2 10.2 4.0	74 75 34		1	21 33 8 34 21 15	4	5.1 4.4 2.8	25 29 11
Ni (mg kg ⁻¹ dmb) Cr (mg kg ⁻¹ dmb)		13 1	0 9	3.2 1.9	6 8		2	21	2	0.2 0.4	2
Pb (mg kg ⁻¹ dmb) Cd (mg kg ⁻¹ dmb)			3 0.3	8.6 0.06	22 0.30				4 0.3	0.8 0.05	3 0

López et al., 2010; Huerta-Pujol et al., 2011.

Necesidad de materiales complementarios

- Equilibrio de nutrientes (relación C/N)
- Equilibrio humedad
- Estructurante

Parámetro	FORM	FV				
Contenido en humedad	83%	34%				
Tipo de MO	fácilmente degradable	Difícilmente degradable				
C/N	12	40				
Capacidad estructurante	baja	alta				
Función	fuente de N y otros	estructurante, fuente de C				

Pero también con la FO-RSU, ya que los impropios no cumplen todas las funciones....

Intervalos aconsejables de los facto	res que más afectan e	el proceso de compostaje			
Factores	Aconsejable	Preferible			
C/N	25/1-40/1	30/1-40/1			
Tamaño de partícula	0.8-1.2 cm	depende del material			
Porosidad	40-60 %	50-60 %			
Densidad aparente	<640 kg m ⁻³	depende del material			
% Humedad	45-65 % smh	50-60 % smh			
Temperatura descomposición	45-70°C	55-65			
Nivel de O ₂	>5 %	>8 %			
рН	6.0-9.0	6.5-8.0			

Características de la FORM. Impropios

http://residus.gencat.cat/ca/lagencia/publicacions/residus_municipals/

21 plantas de FORM400 registros22 parámetros5 años

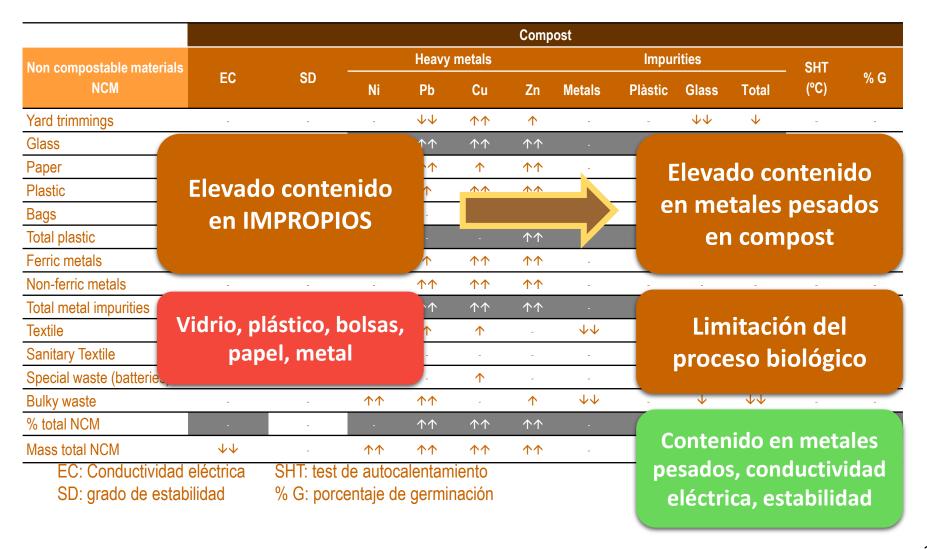
http://residus.gencat.cat/web/.content/home/ambits_dactuacio/recollida_selectiva/residus_municipals/materia_organica__form_-_fv/jornades__estudis_i_enllacos/160426_impropis-FORM-i-qualitat-del-compost.pdf

Características de la FORM. Impropios

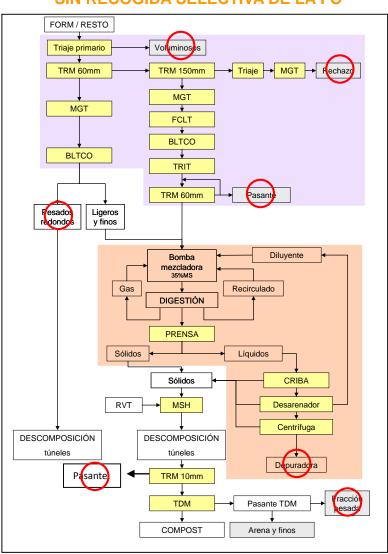
4.3. Calidad de compost y relaciones causales

		Compost										
Non compostable materials				Heavy	metals			lmpu	. SHT			
NCM	EC	SD	Ni	Pb	Cu	Zn	Metals	Plàstic	Glass	Total	(°C)	% G
Yard trimmings	-	-	-	$\downarrow \downarrow$	个个	1	-	-	$\downarrow \downarrow$	V	-	-
Glass	-	↑	-	个个	个个	个个	-		-	-	-	-
Paper	-		-	个个	↑	个个	-	-	-	-	-	个个
Plastic	-	-	-	个	<u> </u>	个个	-	-	-	-	-	-
Bags	个个	-	V	-	$\downarrow \downarrow$	-	-	-	-	$\downarrow \downarrow$	个个	_
Total plastic	-	2	-	-	-	$\uparrow \uparrow$	-	-	-	-	-	-
Ferric metals	-	$\uparrow \uparrow$	_	个	个个	个个	_	-	-	_	-	-
Non-ferric metals	-	-	-	个个	<u> ተ</u> ተ	个个	-	-	-	-	-	-
Total metal impurities	-	$\uparrow \uparrow$	-	个个	个个	个个	-	-	-	-	-	-
Textile	-	$\uparrow \uparrow$	-		↑	-	$\downarrow \downarrow$	1	-	-	-	-
Sanitary Textile	-	$\uparrow \uparrow$	-	-	-	-	-	-	-	-	-	-
Special waste (batteries)	个个	$\uparrow \uparrow$		-	↑	-	-	ē	-	-		-
Bulky waste	-	-	个个	个个	-	1	$\downarrow \downarrow$	-	V	$\downarrow \downarrow$	2	-
% total NCM	-	-	-	个个	个个	个个	-	-	-	-	-	-
Mass total NCM	$\downarrow \downarrow$	-	个个	个个	个个	个个	-	个个		-	-	-

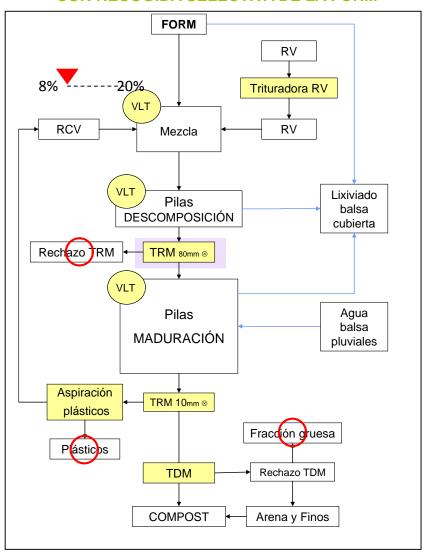
EC: Conductividad eléctrica

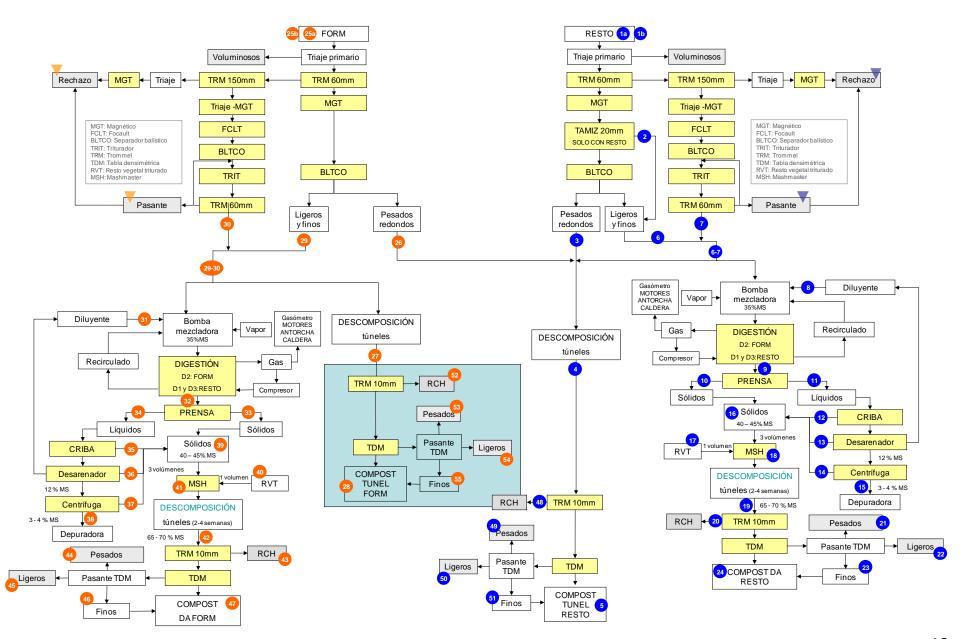

SHT: test de autocalentamiento

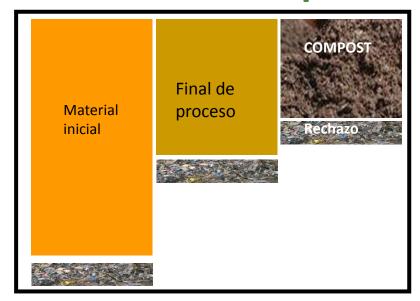
SD: grado de estabilidad


% G: porcentaje de germinación

Características de la FORM. Impropios


4.3. Calidad de compost y relaciones causales




SIN RECOGIDA SELECTIVA DE LA FO

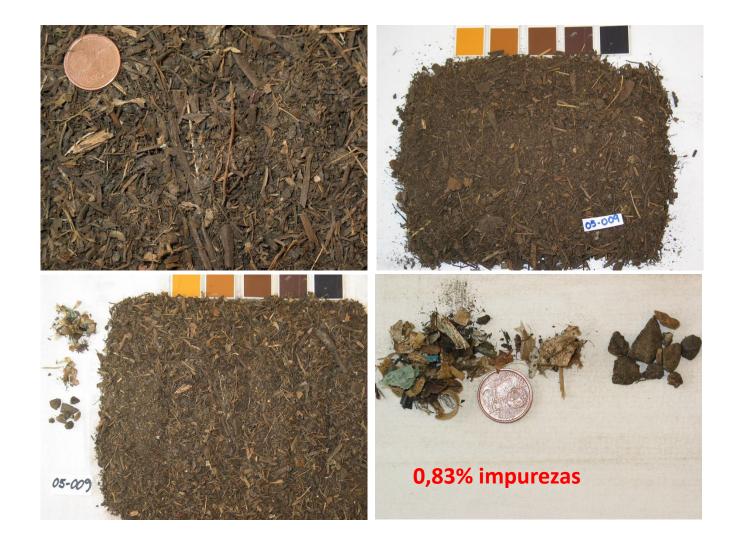
CON RECOGIDA SELECTIVA DE LA FORM

Material inicial con <u>pocos</u> impropios Proceso de compostaje <u>controlado</u>

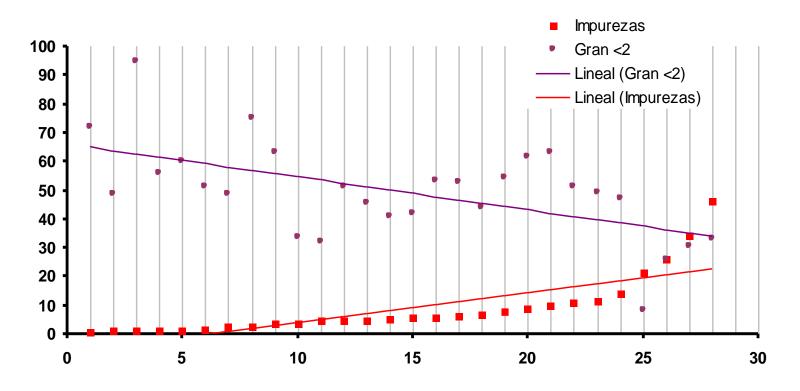
Material inicial con <u>muchos</u> impropios

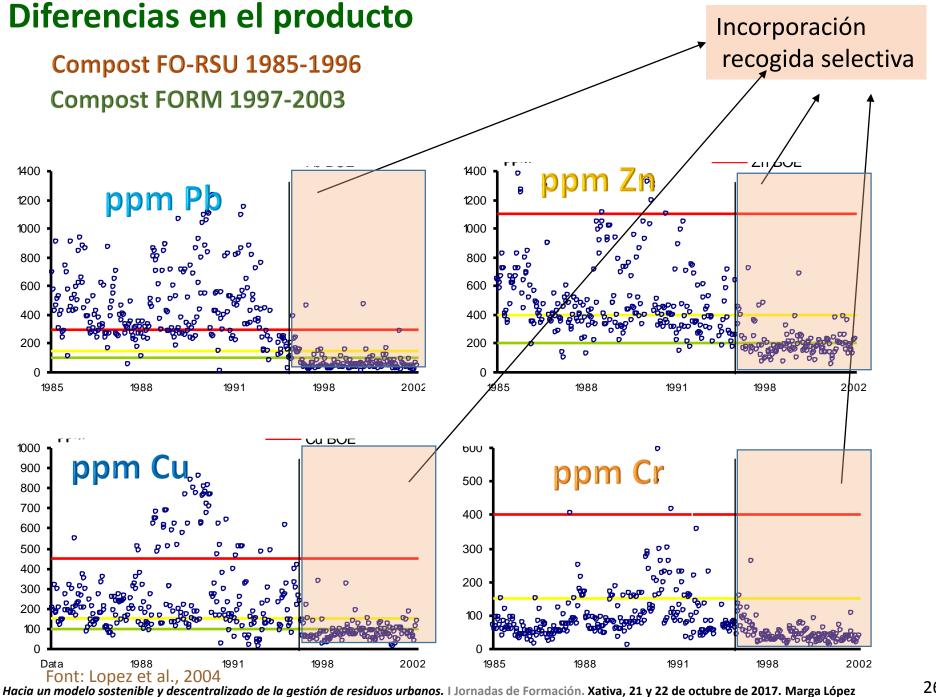
Proceso de compostaje <u>MAL controlado</u>

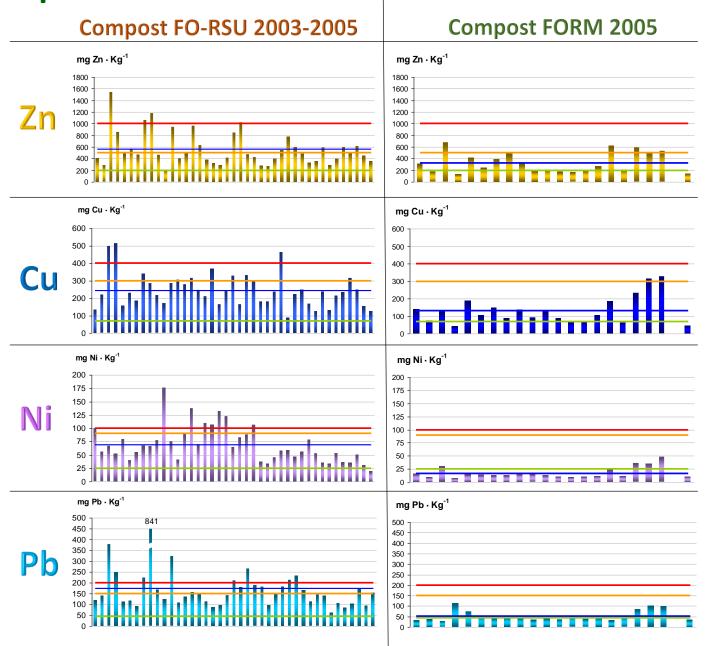
Material inicial con <u>muchos</u> impropios Proceso de compostaje controlado

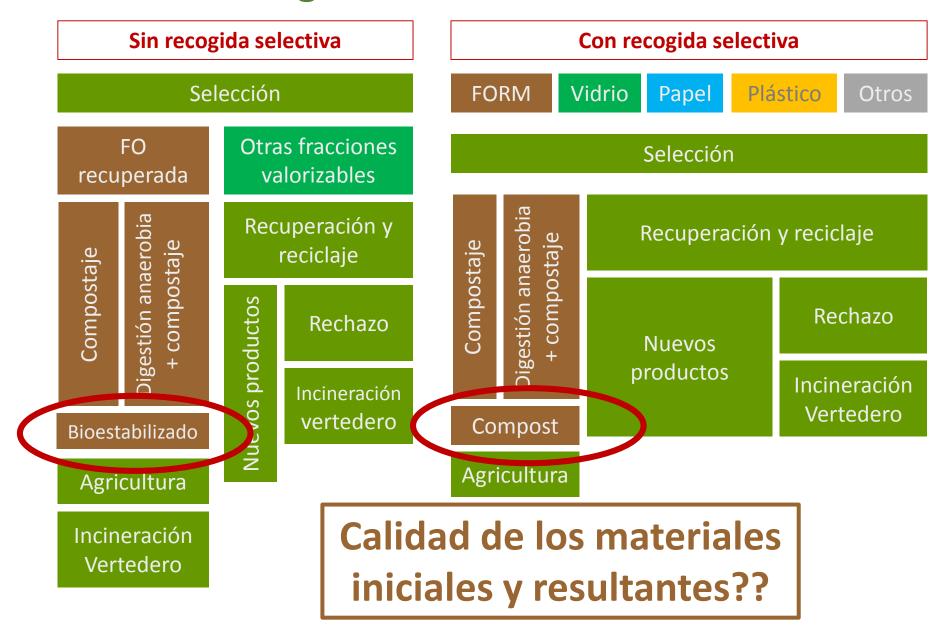





¿Cuál es más estable? ¿Cuál tiene más contaminantes? ¿Cuál tiene más capacidad de retención de agua?







Las plantas de RSU2 (2003-2005) intentan reducir la presencia de impurezas con luces de separación pequeñas

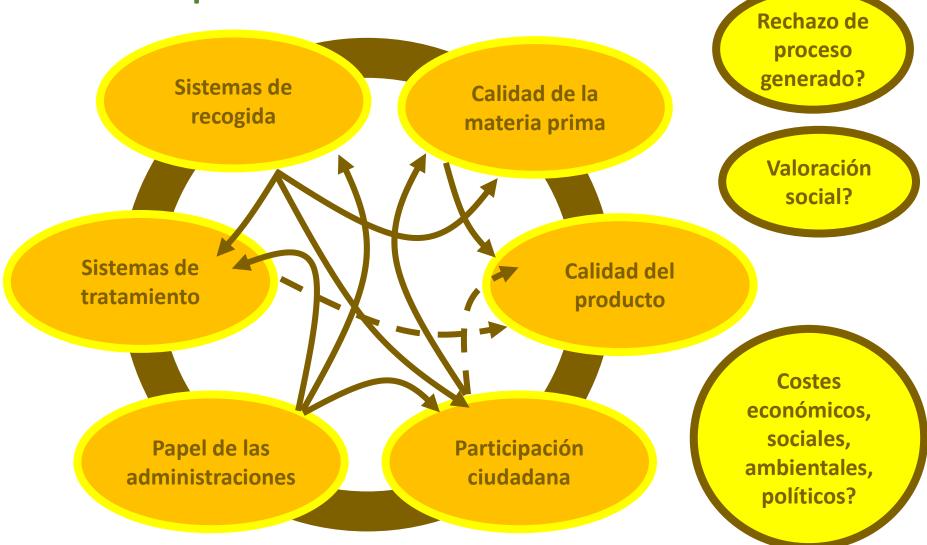
Diferencias en la gestión

...en resumen....

Tratar con FORM en vez de FO-RSU...

La recogida selectiva en origen es el factor clave para mejorar la calidad de los productos

Se optimiza el espacio en las instalaciones de tratamiento


Se puede trabajar con instalaciones pequeñas y descentralizadas

Instalaciones más económicas

Mejora la calidad de otras fracciones recuperables

Reducción del coste de tratamiento de rechazo

Recogida selectiva de fracción orgánica en los domicilios o recogida en masa y separación mecánica en planta???

Aunque el nombre sea parecido, no todo lo obtenido vale para aplicar al suelo....

Gracias por vuestra atención

Oscar Huerta-Pujol, Montserrat Gallart, Montserrat Soliva, F. Xavier Martínez-Farré, Marga López. 2011. Effect of collection system on mineral content of biowaste. Resources, Conservation and Recycling, 55 (11): 1095-1099

Marga López, Montserrat Soliva, F. Xavier Martínez-Farré, Mónica Fernández, Oscar Huerta-Pujol. 2010. Evaluation of MSW organic fraction for composting: Separate collection or mechanical sorting. Resources, Conservation and Recycling, 54 (4): 222-228

López M; Huerta O; Valero J i Soliva M (2004) Raw organic materials origin and compost heavy metal contents. A: Bernal MP; Moral R; Clemente R i Paredes C (ed.) Sustainable organic waste management for environmental protection and food safety. Proceedings of 11th international conference of the FAO ESCORENA network on recycling of agricultural, municipal and industrial residues in agriculture (RAMIRAN). Murcia, p. 113–116.